METABOLIC PRODUCTS OF MICROORGANISMS 268[†]

OBSCUROLIDES, A NOVEL CLASS OF PHOSPHODIESTERASE INHIBITORS FROM STREPTOMYCES

II. MINOR COMPONENTS BELONGING TO THE OBSCUROLIDE B TO D SERIES

> MICHAEL RITZAU^{††}, SIEGRID PHILIPPS and AXEL ZEECK*

Institut für Organische Chemie, Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany

HUBERT HOFF and HANS ZÄHNER

Biologisches Institut, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany

(Received for publication May 31, 1993)

We previously²⁾ reported the isolation, structural elucidation and biological properties of new phos-

phodiesterase inhibitors, the obscurolides A_1 to A_4 (1 to 4) from the cultures of Streptomyces viridochromogenes (strain Tü 2580). A careful search for minor components by chemical screening methods^{3,4)} revealed eight further members of the obscurolide-complex²⁾ (Scheme 1). They were assigned to the B, C and D series signifying their differences in the polyketide moiety (C-1 to C-8), whereas the subscripts indicated the oxidation level of the functional group at C-4'. In this paper the isolation, physico-chemical and biological characterization of these new compounds are described. All obscurolides were isolated as diastereomeric mixtures at C-7 (A and C series) and C-5 (B series), respectively. Only in the cases of 5/6 and 9/10 could the isomers be separated.

The raw product of a 10-liter fermentation²⁾ was purified by flash chromatography on silica gel (column 40×5 cm, CHCl₃-MeOH, 9:1) to give 1.9 g of the obscurolide-complex, which consisted mainly of **2** and **3**. The minor components were isolated directly from the complex by preparative

Scheme 1. Structures of the obscurolides belonging to the A to D series.

[†] See ref 1).

^{††} New address: Hans Knöll Institut, Beutenbergstr. 11, D-07745 Jena, Germany.

Compound	Rf-values ^a	Molecular formula	HREI-MS (M ⁺) found	Calcd for the given formula	IR (KBr cm ^{-1})
$B_{2\alpha}$ (5)	I: 0.69	$C_{15}H_{17}NO_4$	275.1157	275.1152	3350, 1760, 1660
	II: 0.30				
$B_{2\beta}$ (6)	I: 0.78	$C_{15}H_{17}NO_{4}$	275.1154	275.1152	3340, 1770, 1655
	II: 0.36				
B ₃ (7)	I: 0.38	$C_{15}H_{19}NO_4$	277.1314	277.1308	3470, 1770, 1705
	II: 0.15				
B ₄ (8)	I: 0.60	$C_{16}H_{21}NO_4$	291.1471	291.1464	3380, 1770, 1710
	II: 0.45				
C _{2α} (9)	I: 0.10	C ₁₅ H ₁₉ NO ₅	b	293.1257	3400, 1655, 1595
	II: 0.04				
$C_{2\beta}$ (10)	I: 0.10	C ₁₅ H ₁₉ NO ₅	b	293.1257	3400, 1655, 1600
	II: 0.03				
11	I: 0.37	C ₁₆ H ₂₁ NO ₅	307.1419	307.1413	3470, 1720, 1665
	II: 0.07	10 21 0			
D_2 (12)	I: 0.51	$C_{15}H_{17}NO_4$	275.1149	275.1152	3450, 1770, 1705
_ , ,	II: 0.21				. ,

Table 1. Physico-chemical properties of the obscurolides $B_{2\alpha}$ to D_2 (5 to 12).

^a TLC silica gel, I: CHCl₃-MeOH (9:1), II: EtOAc - petroleum ether (1:1).

^b No EI-MS was obtainable.

Table 2. ¹H NMR signals in acetone- d_6 (200 MHz, δ in ppm relative to internal TMS) of the obscurolides $B_{2\alpha}$ to D_2 (5 to 12).

Proton	$B_{2\alpha}$ (5)	B _{2β} (6)	B ₃ (7) ^a	B ₄ (8) ^b	C _{2a} (9)	$C_{2\beta}$ (10)	11°	D ₂ (12)
2-Ha	2.44 dd	2.39 dd	2.35 dd	2.38 dd	2.40 dd	2.40 dd	2.62 dd	2.48 dd
2-Hb	3.13 dd	3.17 dd	3.06 dd	3.10 dd	2.55 dd	2.58 dd	2.76 dd	3.10 dd
3-H	4.43 m	4.42 m	4.32 m	4.38 m	4.24 m	4.21 m	4.38 m	4.06 m
3-NH	6.48 br d	6.49 br d	5.39 br d	5.51 br d	6.62 br d	6.60 br d	6.12 br d	6.46 br d
4-H	4.43 m	4.42 m	4.32 m	4.38 m	4.05 m	4.04 m	4.08 m	4.42 dt
5-H	4.43 m	4.42 m	4.32 m	4.38 m	5.79 m	5.80 m	5.77 m	1.85 ddt ^d
5-OH	4.56 d	4.75 d	2.93 br	2.90 br	3.03 bre	3.00 bre	4.52 br	2.21 m ^f
6-H	5.62 dd	5.64 dd	5.61 dd	5.66 dd	5.79 m	5.80 m	5.96 m	2.72 dd ^g
7-H	5.92 dq	5.93 dq	5.80 dq	5.85 dq	4.24 m	4.21 m	4.38 m	_
8-CH ₃	1.69* d	1.74* d	1.69 d	1.70 d	1.18 d	1.13 d	1.27* d	2.19 s
2'-H/6'-H	6.83 d	6.81 d	6.66 d	6.73 d	6.76 d	6.75 d	6.73 d	6.63 d
3'-H/5'-H	7.70 d	7.69 d	7.14 d	7.17 d	7.63 d	7.62 d	7.74 d	7.76 d
7'-H	9.73 s	9.74 s	4.47 s ^h	4.31 s ^h	9.73 s	9.73 s	9.77 s	9.79 s

^a 7'-OH: $\delta = 3.03$ br s.

- ^b 8'-CH₃: $\delta = 3.29$ q.
- ° OCH₃: $\delta = 3.70$ q.
- ^d 5-Ha.
- ° 7-OH.
- f 5-Hb.
- ^g 6-H₂.
- ^h 7'-CH₂.
- * Split signal, main peak.

reversed phase HPLC (Nucleosil 100 C-18, 10 μ m, H₂O-MeOH, 70:30 to 0:100) in amounts of 9 mg (5), 7 mg (6), 9 mg (10), 8 mg (11) and 5 mg (12) and from fractions, which were obtained from the complex after flash chromatography on silica gel (column 40×5 cm, ethyl acetate - petroleum ether, 1:1) and subsequent chromatography on Sephadex

LH-20 with methanol yielding 25 mg of 7, 18 mg of 8 and 16 mg of 9. All obscurolides were easily detectable due to their UV-absorption at 254 nm and their yellow color on TLC plates after staining with EHRLICH's reagent. Some physico-chemical properties of the new obscurolides are given in Table 1, whereas the ¹H and ¹³C NMR data are shown

Carbon	$B_{2\alpha}$ (5)	$\mathbf{B}_{2\beta} \ (6)$	B ₃ (7)	B ₄ (8) ^a	C _{2α} (9)	$C_{2\beta}$ (10)	11 ^b	D ₂ (12)
1	175.7 s	175.5 s	176.3 s	176.2 s	179.9 s	180.0 s	172.8 s	174.8 s
2	36.5 t*	36.7 t*	36.8 t*	36.7 t*	39.7 t	40.4 t	35.3 t*	35.8 t
3	51.7 d*	50.1 d*	52.2 d*	52.1 d*	56.4 d	56.8 d	55.2 d	54.7 d
4	88.4 d	88.3 d	88.7 d	88.6 d	74.4 d	75.2 d	73.1 d*	84.8 d
5	73.2 d*	72.7 d*	73.4 d*	73.3 d	130.4 d	131.2 d	129.2 d*	28.3 t
6	129.1 d	128.9 d	128.7 d	128.7 d	137.2 d	138.0 d	137.6 d*	39.3 t
7	130.9 d	130.6 d	131.2 d	131.2 d	68.8 d	69.7 d	67.8 d*	206.5 s
8	17.9 q	18.0 g	17.9 q	17.9 g	23.4 g	24.0 g	23.9 q*	30.5 g
1′	153.3 s	153.0 s	147.0 s	148.8 s	155.8 s	156.4 s	154.2 s	153.3 s
2'/6'	113.2 d	113.2 d	113.9 d	113.8 d	113.5 d	114.0 d	113.2 d	113.2 d
3'/5'	132.7 d	132.6 d	129.1 d	130.2 d	133.6 d	134.2 d	132.5 d	132.6 d
4'	128.0 s	127.9 s	132.3 s	128.3 s	126.5 s	127.1 s	127.2 s	128.1 s
7′	190.2 d	190.2 d	64.7 t*	75.0 t	192.1 d	192.7 d	189.9 d	190.2 d

Table 3. ¹³C NMR signals (50.3 MHz, δ in ppm relative to internal TMS) of the obscurolides $B_{2\alpha}$ to D_2 (5 to 12) in acetone- d_6 , multiplicity assignments by attached proton test (APT).

^a OCH₃: $\delta = 57.5$ q.

^b OCH₃: $\delta = 51.7$ q.

* Split signal, main peak.

in Table 2 and Table 3, respectively.

The molecular formula $C_{15}H_{17}NO_4$ of the obscurolides $B_{2\alpha}(5)$ and $B_{2\beta}(6)$ was identical with that of 2, and the physico-chemical properties apart from the specific rotation $([\alpha]_{D}^{20} = +65.9^{\circ})$ for 5 and $+23.4^{\circ}$ for 6) were very similar. In the ¹H NMR spectra a downfield shift of 8-CH₃ from δ 1.22 (2) to δ 1.69 (5) and δ 1.74 (6) revealed the location of the double bond between C-6 and C-7. Accordingly 5-H showed an upfield shift from δ 5.95 (2) to δ 4.43/ 4.42 (5/6) demonstrating the shifting of the secondary hydroxy group from C-7 to C-5. Thus 5 and 6 (Scheme 1) differ in the stereochemistry at C-5 and for the substituents at C-3/C-4 we assume trans configuration as shown for an obscurolide A2 derivative²⁾. The related obscurolides B_3 (7) and B_4 (8) exhibited the same rearrangement of the allylic alcohol in the side chain as 5 and 6. They were isomers of obscurolide A_3 (3) and A_4 (4), respectively, showing the typical signals for a hydroxymethylene group (7, $\delta_{\rm H}$, 4.47, $\delta_{\rm C}$ 64.7) and its corresponding methyl ether (8, $\delta_{\rm H}$ 3.29/4.31, $\delta_{\rm C}$ 57.5/75.0) attached to the benzene ring at C-4'.

The C series of the obscurolides combines those compounds, in which the γ -lactone was opened to the γ -hydroxycarboxylic acid (9/10) and its methyl ester (11), while the structure of the side chain follows the A series. Characteristic for all these compounds was the smaller distance of the ¹H NMR signals of the diastereotopic methylene protons 2-Ha and 2-Hb (*e.g.* δ 2.40 and 2.55 for 9), which were fixed no longer in a γ -lactone ring. All open chain obscurolides had an aldehyde group in 4'-position,

Table	4.	Effect of	f the	obsci	rolides	$B_{2\alpha}$	to	D_2	(5	to	12)
on	cal	cium/caln	10du	lin-de	penden	t pł	iosj	pho	die	ster	ase
from	n bo	ovine brai	n.								

Obscurrolide	IC ₅₀ (mм)
$B_{2a}(5)$	2.5
$B_{2\beta}(6)$	>15
$B_{3}(7)$	1.5
$B_4(8)$	0.4
$C_{2a}(9)$	10
C_{26}^{24} (10)	12
11	0.8
D ₂ (12)	15

9 and 10 were diastereomers regarding C-7.

The only representive of the D series, obscurolide D_2 (12), showed a saturated side chain, in which starting from 2 the hydroxy group at C-7 has been oxidized to the ketone (δ_C 206.5).

The minor components of the obscurolide complex were tested as inhibitors of the calcium/calmodulin-dependent cAMP phosphodiesterase from bovine brain (Table 4)²⁾. Although no definitive structure-activity relationship could be made with this limited data, it seems likely that the biological activity increases with the degree of reduction of the substituent at C-4'. The influence of the stereochemistry at C-5 becomes apparent if one compares the IC₅₀ values of the diastereomers **5** and **6**. Although some of the minor components of the obscurolide complex are twenty-fold more active than the main components **2** and **3**, additional improvement was performed through enzymatic bromination, which will be the subject of a following paper⁵⁾. In analogy to the obscurolides of the A series the obscurolides of the B to D series revealed no growth inhibiting potency against bacteria, yeast and fungi.

Acknowledgments

The Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft (SFB 323) are gratefully acknowledged for financial support.

References

- PETERSEN, F.; H. ZÄHNER, J. METZGER, S. FREUND & R.-P. HUMMEL: Germicidin, an autoregulative germination inhibitor of *Streptomyces viridochromo*genes NRRL B-1551. J. Antibiotics 46: 1126~1138, 1993
- HOFF, H.; H. DRAUTZ, H.-P. FIEDLER, H. ZÄHNER, J. E. SCHULTZ, W. KELLER-SCHIERLEIN, S. PHILIPPS, M. RITZAU & A. ZEECK: Metabolic products of

microorganisms. 261. Obscurolides, a novel class of phosphodiesterase inhibitors from streptomyces. J. Antibiotics 45: $1096 \sim 1107$, 1992

- 3) ZÄHNER, H.; H. DRAUTZ, P. FIEDLER, R. GROTE, W. KELLER-SCHIERLEIN, W. A. KÖNIG & A. ZEECK: Ways to new metabolites from Actinomycetes. *In Biology of Actinomycetes*. 88. *Eds.*, Y. OKAMI, T. BEPPU & H. OGAWARA, pp. 171~177, Japan Scientific Societies Press, Tokyo, 1988
- 4) GRABLEY, S.; J. WINK & A. ZEECK: Chemical screening as applied to the discovery and isolation of microbial secondary metabolites. *In* Biotechnology Focus 3, *Eds.*, R. K. FINN & P. PRÄVE, pp. 359~370, Hanser Publishers, Munich, 1992
- 5) BRAUN, D.; H. HOFF, H. P. FIEDLER, H. ZÄHNER, F. THIERMANN, K. H. VAN PEE, M. RITZAU & A. ZEECK: Metabolic products of microorganisms. 269. Enzymatic halogenation of obscurolides with a non-heme bromoperoxidase from *Streptomyces aureofaciens*. J. Antibiotics, in preparation